Boolean AND	cot (acot) sinh (asinh)	Register $\mathrm{y} \rightarrow[\mathrm{x}](\mathrm{s}[\mathrm{x}] \rightarrow)$
OR	cosh (acosh)	$[\mathrm{x}] \rightarrow \mathrm{x}(\rightarrow \mathrm{s}[\mathrm{x}])$
NAND	tanh (atanh)	count
NOR	csch (acsch)	$x \rightarrow \%(\% \rightarrow X)$
NOT	sech (asech)	
MOD	coth (acoth)	Constants
XOR		π
shl	Conversion	e
shr	bsCvt	h
asl	\rightarrow.hms (.hms \rightarrow)	C
asr	.hms+	$\infty(-\infty)$
rol	.hms-	NAN (-NAN)
ror	\rightarrow h.ms (h.ms \rightarrow)	
$y \ll x$	h.ms+	Stats
$y \gg x$	h.ms-	mean (mdian)
	$\rightarrow r \theta(\rightarrow x y)$	stdev (psdev)
Base/Data type	$\rightarrow r \theta \varphi(\rightarrow x y z)$	$\sum \mathrm{S}[](\Pi \mathrm{S}[])$
bsCvt	$\rightarrow \mathrm{p} \boldsymbol{z}(\rightarrow x y z)$	$\Sigma S^{\wedge} 2$
asint	$\rightarrow r \theta \varphi(\rightarrow \rho \varphi z)$	count
asFIt		x !
sBit	Power $\ln \left(e^{\wedge} x\right)$	yChsX
Basic	$\log 2\left(2^{\wedge} x\right)$	Financial
+	$\log 10\left(10^{\wedge} x\right)$	X* \%
-	$x^{\wedge} 2(\sqrt{ })$	$x \rightarrow \%(\% \rightarrow X)$
X	$\mathrm{x}^{\wedge} 3(\sqrt[3]{ })$	\%
/	$\sqrt{ }\left(x^{\wedge} 2\right)$	$\Delta \%$
\pm	$y^{\wedge} x\left(y^{\wedge} 1 / x\right)$	fVal
1/x	$\sinh (a s i n h)$	pVal
x!	cosh (acosh)	
	tanh (atanh)	
Trigonometry sin (asin)	csch (acsch)	
$\sin (\mathrm{asin})$	sech (asech)	
cos (acos)	coth (acoth)	
tan (atan)		
csc (acsc)		
sec (asec)		

AND
Function Performed:
$R=X \& Y$

\mathbf{X}	\mathbf{Y}	\mathbf{R}
0	0	0
0	1	0
1	0	0
1	1	1

Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
		X	X	

Restrictions:
X must be integer
Y must be integer
Word Size Extension Applies
Signed from X

OR
Function Performed:
$R=X \mid Y$

\mathbf{X}	\mathbf{Y}	\mathbf{R}
0	0	0
0	1	1
1	0	1
1	1	1

Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X must be integer
Y must be integer
Word Size Extension Applies
Signed from X

NAND
Function Performed:
$R=X \& Y$

\mathbf{X}	\mathbf{Y}	\mathbf{R}
0	0	1
0	1	1
1	0	1
1	1	0

Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X must be integer
Y must be integer
Word Size Extension Applies
Signed from X

NOR
Function Performed:
$R=X \& Y$

\mathbf{X}	\mathbf{Y}	\mathbf{R}
0	0	1
0	1	0
1	0	0
1	1	0

Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
		X	X	

Restrictions:
X must be integer
Y must be integer
Word Size Extension Applies
Signed from X

NOT
Function Performed:
$R=\sim X$

\mathbf{X}	\mathbf{R}
0	1
1	0

Consumed:
X
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X must be integer
Signed from X

MOD

Function Performed:
$\mathrm{R}=\mathrm{X} \% \mathrm{Y}$
Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X must be integer
Y must be integer
Result will be (+)

XOR

Function Performed:
$R=X \& Y$

\mathbf{X}	\mathbf{Y}	\mathbf{R}
0	0	1
0	1	0
1	0	0
1	1	0

Consumed:
X, Y
Results in:
X
Alt Function:
NO

Flags:

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
		X	X	

Restrictions:
X must be integer
Y must be integer
Word Size Extension Applies
Signed from X

shl

Function Performed:
$R=X \ll 1$

Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X must be integer
srh
Function Performed:
$\mathrm{R}=\mathrm{X} \gg 1$

Consumed:
X
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X must be integer

asl

Function Performed:
$R=X \ll 1$

Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
		X	X	X

Restrictions: X must be integer
asr
Function Performed:
$R=X \gg 1$

Signed

Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X must be integer

rol

Function Performed:
$R=(X \ll 1) \mid X_{\text {MSB }}$ into
X LSb

Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X must be integer

Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X must be integer
$\mathbf{y} \ll \mathbf{x}$
Function Performed:
$R=X \ll Y$
Operation Y times:

Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X must be integer
Y must be integer
Word size from X
Signed from X

$y \gg x$

Function Performed:
$R=X \ggg$
Operation Y times:

Signed

Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X must be integer
Y must be integer
Word size from X
Signed from X

bsCvt

Function Performed:
Convert Y to Base X
Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:

X Must be Integer and

asFlt

Function Performed:
Assign the value in X to a floating point without any conversion.

Consumed:
X
Results in:
X
Alt Function:
NO
Flags:

Restrictions:

No range checking is done. Result my be NAN, ∞ or other non-sensical value.
Results are best when the input is a 64 bit unsigned number.
asInt
Function Performed:
Assign a floating point value in X to a 64 unsigned Integer without any conversion.

Consumed:
X
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
This will show the internal representation of a floating point number in 64 bit hex format.

sBit

Function Performed:
Set the significant bits used on the mantissa output of floating point numbers. The default value is 48 bits.

A value of 0 will reset the significant bits back to the default of 48 .

	Radix			
	2	8	10	16
4	4	2	2	1
8	8	3	3	2
12	12	4	4	3
16	16	6	5	4
20	20	7	7	5
24	24	8	8	6
32	32	11	10	8
40	40	14	13	10
48	48	16	15	12

Consumed:
X
Results in:
None
Alt Function:
NO
Flags:

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
		X		

Restrictions:
X is integer and:

$+$
Function Performed:
$R=X+Y$
Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:

When both X.Y are Integer, result is Integer. See NOTE.

When either X.Y is Floating point, result is Floating Point

NOTE: When Auto Promotion is selected in the defaults screen, the YASC will treat all integers as floating point.
-
Function Performed:
$R=X-Y$
Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:

When both X.Y are Integer, result is Integer. See NOTE.
When either X.Y is Floating point, result is Floating Point

NOTE: When Auto Promotion is selected in the defaults screen, the YASC will treat all integers as floating point.

X

Function Performed:
$\mathrm{R}=\mathrm{X}$ * Y
Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:

When both X.Y are Integer, result is Integer. See NOTE.
When either X.Y is Floating point, result is Floating Point

NOTE: When Auto Promotion is selected in the defaults screen, the YASC will treat all integers as floating point.
/
Function Performed:
$R=\frac{Y}{X}$
Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
When both X.Y are Integer, result is Integer. See NOTE.
When either X.Y is Floating point, result is Floating Point

NOTE: When Auto Promotion is selected in the defaults screen, the YASC will treat all integers as floating point.
\pm
Function Performed:
Change Sign
Consumed:
X
Results in:
X
Alt Function:
NO
Flags:

Restrictions:

Does not end the edit cycle
While in Edit Mode:
Will perform a CHS on the exponent if entering an exponent.
Will perform a CHS on the mantissa when no exponent exists.

When not in Edit Mode:

Will perform a CHS on the mantissa when no exponent exists.

When X is signed Integer:

Will perform the 2's complement and show the "-" sign.
" 1231 " will become "-1231"

When X is unsigned Integer:

Will perform 2's compliment.
" 1 " will become 65535 if word size is set to 16 .

1/x

Function Performed:
$R=\frac{1}{X}$
Consumed:
X
Results in:
X
Alt Function:
NO
Flags:

Restrictions:

x!
Function Performed:
$R=\prod_{n=1}^{x} n$
$\mathrm{R}=1$ when $\mathrm{x}=0$
Consumed:
X
Results in:
X
Alt Function:
NO
Flags:

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
\mathbf{X}		X		

Restrictions:
X is a positive Integer.

Unit Circle for Degrees

Sin and Cos for Selected Radians

Sin and Cos for Selected Degrees

\sin (asin)

Function Performed:
$R=\sin (X)$
$R^{\prime}=\operatorname{asin}(X)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\sin (X)$

$\operatorname{asin}(X)$

Restrictions:
$\mathbf{s i n}$ - the domain of real numbers.
asin:

NOTE: YASC uses the RAD/ DEG button to determine any scaling of the answer/input.

cos (acos)

Function Performed:
$R=\cos (X)$
$R^{\prime}=\operatorname{acos}(X)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\cos (X)$

$\operatorname{acos}(X)$

Restrictions:
cos - the domain of real numbers.
acos:

NOTE: YASC uses the RAD/ DEG button to determine any scaling of the answer/input.

tan (atan)

Function Performed:
$R=\frac{\sin (x)}{\cos (x)}$
$R^{\prime}=\operatorname{acos}(X)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\tan (X)$

Restrictions:
tan:

atan - the domain of real numbers.

NOTE: YASC uses the RAD/ DEG button to determine any scaling of the answer/input.

csc (acsc)

Function Performed:
$R=\frac{1}{\sin (x)}$
$R^{\prime}=2 \cdot \operatorname{atan}\left(\frac{\frac{1}{x}}{1+\sqrt{1-\left(\frac{1}{x^{2}}\right)}}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\csc (X)$

$\operatorname{acsc}(X)$

Restrictions:
csc:

acsc:

NOTE: YASC uses the RAD/ DEG button to determine any scaling of the answer/input.
sec (asec)
Function Performed:
$R=\frac{1}{\cos (x)}$
$R^{\prime}=\left\{\begin{array}{cc}\pi & -1=x \\ 2 \cdot \operatorname{atan}\left(\frac{\sqrt{1-\left(\frac{1}{x}\right)}}{1+\left(\frac{1}{x}\right)}\right) & -1<x \leq 1\end{array}\right.$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\sec (X)$

$\operatorname{asec}(\mathrm{X})$

Restrictions:
sec:

asec:

NOTE: YASC uses the RAD/ DEG button to determine any scaling of the answer/input.
cot (acot)
Function Performed:
$R=\frac{\cos (x)}{\sin (x)}$
$R^{\prime}=\left\{\begin{array}{rr}\pi+\operatorname{atan}\left(\frac{1}{x}\right) & x<0 \\ \operatorname{atan}\left(\frac{1}{x}\right) & x>0\end{array}\right.$

Consumed:

X
Results in:
X
Alt Function:
YES
Flags:
$\cot (\mathrm{X})$

$\operatorname{acot}(\mathrm{X})$

Restrictions:
cot:

(0, -1)
acot - the domain of real numbers.
NOTE: YASC uses the RAD/ DEG button to determine any scaling of the answer/input.
\rightarrow.hms (.hms \rightarrow)
Function Performed:
\rightarrow.hms
Convert decimal hours to: ddd.hhh:mmm:sss.fracs

Where:
ddd = Days/Degrees
hhh = Hours (0-24)
$\mathrm{mmm}=$ Minutes ($0-60$)
sss = Seconds (0-60)
fracs = fractions of seconds
(.hms \rightarrow)

Convert from:
ddd.hhh:mmm:sss.fracs
to decimal hours.
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
\rightarrow.hms
.hms \rightarrow

Restrictions:
None

NOTE: An input of (hhh = 100) is allowed. Same is true for mmm and sss.

NOTE: The output is formatted specifically for Radix 10 math.
.hms+
Function Performed: Add .hms in X to .hms in Y . ddd.hhh:mmm:sss.fracs

Where:
ddd = Days/Degrees
hhh = Hours (0-24)
$\mathrm{mmm}=$ Minutes $(0-60)$
sss = Seconds (0-60)
fracs = fractions of seconds
Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:
.hms+

Restrictions:

None

NOTE: An input of (hhh = 100) is allowed. Same is true for mmm and sss.
NOTE: The output is formatted specifically for Radix 10 math.
NOTE: Result will normalize hhh, mmm and sss to be within $0-24,0$ 60 and 0-60 respectively.

.hms-

Function Performed:
Subtract .hms in X from .hms in Y .
ddd.hhh:mmm:sss.fracs

Where:

ddd = Days/Degrees
hhh $=$ Hours (0-24)
mmm = Minutes ($0-60$)
sss = Seconds (0-60)
fracs = fractions of seconds
Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:
.hms-

Restrictions:
None

NOTE: An input of (hhh = 100) is allowed. Same is true for mmm and sss.

NOTE: The output is formatted specifically for Radix 10 math.
NOTE: Result will normalize hhh, mmm and sss to be within 0-24, 060 and 0-60 respectively.
\rightarrow h.ms (h.ms \rightarrow)
Function Performed:
\rightarrow h.ms
Convert decimal hours to:
hhh.mmm:sss.fracs
Where:
hhh = Hours
$\mathrm{mmm}=$ Minutes ($0-60$)
sss = Seconds (0-60)
fracs $=$ fractions of seconds
(h.ms \rightarrow)

Convert from:
ddd.hhh:mmm:sss.fracs
to decimal hours.
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
\rightarrow h.ms
h.ms \rightarrow

Restrictions:
None

NOTE: An input of (hhh = 100) is allowed. Same is true for mmm and sss.
NOTE: The output is formatted specifically for Radix 10 math.
h.ms+

Function Performed: Add h.ms in X to $\mathrm{h} . \mathrm{ms}$ in Y .
hhh.mmm:sss.fracs
Where:
hhh = Hours
mmm = Minutes (0-60)
sss = Seconds (0-60)
fracs = fractions of seconds
Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
None

NOTE: An input of (hhh = 100) is allowed. Same is true for mmm and sss.
NOTE: The output is formatted specifically for Radix 10 math.

NOTE: Result will normalize mmm and sss to be within 0-60 and 0-60 respectively.
h.ms-

Function Performed:
Subtract h.ms in X from h.ms in Y .
hhh.mmm:sss.fracs

Where:

hhh = Hours
$\mathrm{mmm}=$ Minutes ($0-60$)
sss = Seconds (0-60)
fracs = fractions of seconds
Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:
hms+

Restrictions:
None

NOTE: An input of (hhh = 100) is allowed. Same is true for mmm and sss.
NOTE: The output is formatted specifically for Radix 10 math.
NOTE: Result will normalize mmm and sss to be within 0-60 and 0-60 respectively.

$\rightarrow \mathbf{r}$ ($\rightarrow \mathrm{xy}$)

Function Performed:
$R=\left\{\begin{array}{l}r_{x}=\sqrt{x^{2}+y^{2}} \\ \theta_{y}=\left\{\begin{array}{l}0 \\ \operatorname{atan} 2\left(\frac{y}{x}\right) x=y=0 \text { and } y \neq 0\end{array} \quad-\pi \leq \theta \leq \pi\right.\end{array}\right.$
$R^{\prime}=\left\{\begin{array}{l}x_{r}=r \cdot \cos (\theta) \\ y_{\theta}=r \cdot \sin (\theta)\end{array}\right.$

Consumed:
X, Y
Results in:
X, Y
Alt Function:
YES
Flags:
$\rightarrow r \theta$
$\rightarrow x y$

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
			X	

Restrictions:
None

NOTE: YASC uses the RAD/ DEG button to determine any scaling of the answer/input.
$\rightarrow \mathrm{r} \theta \varphi(\rightarrow \mathrm{xyz})$
Function Performed:
$R=\left\{\begin{array}{l}r_{x}=\sqrt{x^{2}+y^{2}+z^{2}} \\ \theta_{y}=\operatorname{acos}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \\ \varphi_{z}=\operatorname{atan2}\left(\frac{y}{x}\right)\end{array}\right.$
$R^{\prime}=\left\{\begin{array}{l}x_{r}=r \cdot \sin (\theta) \cos (\varphi) \\ y_{\theta}=r \cdot \sin (\theta) \sin (\varphi) \\ z_{\varphi}=r \cdot \cos (\theta)\end{array}\right.$

Consumed:
X, Y, Z
Results in:
X, Y, Z
Alt Function:
YES
Flags:
$\rightarrow \mathbf{r} \varphi$
\rightarrow xyz

Restrictions:
None

NOTE: YASC uses the RAD/ DEG button to determine any scaling of the answer/input.
$\rightarrow \boldsymbol{p} \boldsymbol{z}$ ($\rightarrow \mathrm{xyz}$)
Function Performed:
$R= \begin{cases}\varrho_{x}=\sqrt{x^{2}+y^{2}} \\ \varphi_{y}=\left\{\begin{array}{l}0 \\ \operatorname{asin}\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right) \\ -\operatorname{asin}\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)+\pi \\ z_{z}=z\end{array}\right. \\ R^{\prime}=\left\{\begin{array}{l}x \geq 0\end{array}\right. \\ \begin{array}{ll}x_{\varrho}=\varrho \cdot \cos (\varphi) \\ y_{\varphi}=\varrho \cdot \sin (\varphi) \\ z_{z}= & z\end{array}\end{cases}$
Cylindrical/Cartesian Relationship

Consumed:
X, Y
Results in:
X, Y, Z
Alt Function:
YES
Flags:
$\rightarrow \rho \varphi z$
$\rightarrow x y z$

Restrictions:
None

NOTE: YASC uses the RAD/ DEG button to determine any scaling of the answer/input.
$\rightarrow r \theta \varphi(\rightarrow \rho \varphi z)$
Function Performed:
$R=\left\{\begin{array}{l}r_{\varrho(x)}=\sqrt{\varrho_{x}^{2}+z^{2}} \\ \theta_{\varphi(y)}=\operatorname{asin}\left(\frac{z}{\sqrt{\varrho_{x}^{2}+z^{2}}}\right) \\ \varphi_{\varphi(z)}=\varphi_{y}\end{array}\right.$
$R^{\prime}=\left\{\begin{array}{l}\varrho_{r(x)}=r_{x} \cdot \cos \left(\theta_{y}\right) \\ \varphi_{\theta(y)}=\varphi_{z} \\ z_{\varphi(z)}=r_{x} \cdot \sin \left(\theta_{y}\right)\end{array}\right.$
NOTE: Ref ($\rightarrow \mathrm{r} \theta \varphi$) and $(\rightarrow \mathrm{p} \varphi \mathrm{z}$) for coordinate configuration.

Consumed:
X, Y, Z
Results in:
X, Y, Z
Alt Function:
YES
Flags:
$\rightarrow \rho \varphi z$
$\rightarrow \mathrm{xyz}$

Restrictions:

None

NOTE: YASC uses the RAD/ DEG button to determine any scaling of the answer/input.

sinh (asinh)

Function Performed:
$R=\frac{1}{2}\left(e^{X}-e^{-X}\right)$
$R^{\prime}=\ln \left(x+\sqrt{x^{2}+1}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\sinh (X)$

$\operatorname{asinh}(X)$

Restrictions:
sinh - the domain of real numbers.
asinh - the domain of real numbers.

cosh (acosh)

Function Performed:
$R=\frac{1}{2}\left(e^{X}+e^{-X}\right)$
$R^{\prime}=\ln \left(x+\sqrt{x^{2}-1}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\cosh (X)$

$\operatorname{acosh}(X)$

Restrictions:
cosh - the domain of real numbers.
acosh:

tanh (atanh)

Function Performed:
$R=\frac{\sinh (x)}{\cosh (x)}=\frac{e^{2 x}-1}{e^{2 x}+1}$
$R^{\prime}=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\tanh (X)$

$\operatorname{atanh}(X)$

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
		X	X	

Restrictions:
tanh - the domain of real numbers.
atanh:

csch (acsch)
Function Performed:
$R=\frac{2}{\left(e^{X}-e^{-X}\right)}$
$R^{\prime}=\ln \left(\frac{1}{X}+\frac{\sqrt{1+X^{2}}}{|X|}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\operatorname{csch}(X)$

$\operatorname{acsch}(X)$

Restrictions:
csch:

acsch - the domain of real numbers.

sech (asech)

Function Performed:

$$
\begin{aligned}
& R=\frac{2}{\left(e^{X}+e^{-X}\right)} \\
& R^{\prime}=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)
\end{aligned}
$$

Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\operatorname{sech}(X)$

$\operatorname{asech}(X)$

Restrictions:
sech - the domain of real numbers.
asech:

coth (acoth)

Function Performed:
$R=\frac{\cosh (x)}{\sinh (x)}=\frac{e^{2 x}+1}{e^{2 x}-1}$
$R^{\prime}=\frac{1}{2} \ln \left(\frac{X+1}{X-1}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\operatorname{coth}(\mathrm{X})$

$\operatorname{acoth}(X)$

Restrictions:
coth

acoth:

\mathbf{x}^{\wedge} 2 (\mathfrak{V})
Function Performed:
$R=X^{2}$
$R^{\prime}=\sqrt{X}$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$x^{\wedge} 2$

\checkmark

Restrictions:
$\mathbf{x}^{\wedge} \mathbf{2}$ - The domain of real numbers.
$\sqrt{ }$:

$\sqrt{ }\left(\mathbf{x}^{\wedge}\right)$
Function Performed:
$R=\sqrt{X}$
$R^{\prime}=x^{2}$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
\checkmark

$x^{\wedge} 2$

Restrictions:
\checkmark :

$\mathbf{x}^{\wedge} \mathbf{2}$ - The domain of real numbers.
$x^{\wedge} 3^{(\sqrt[3]{2})}$
Function Performed:
$R=x^{3}$
$R^{\prime}=\sqrt[3]{x}$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$x^{\wedge} 3$

$\sqrt[3]{ }$

Restrictions:
$x^{\wedge} 3$ - The domain of real numbers.
$\sqrt[3]{ }$ - The domain of real numbers.
$y^{\wedge} x\left(y^{\wedge} 1 / x\right)$
Function Performed:
$R=Y^{X}$
$R^{\prime}=\sqrt[x]{Y}$
Consumed:
X, Y
Results in:
X
Alt Function:
YES
Flags:
$y^{\wedge} x$

$y^{\wedge} 1 / x$

Restrictions:
$y^{\wedge} x$
If $X=0 R=1$
If $Y=0 R=0$
X - The domain of real numbers.

Y:

$y^{\wedge 1 / x}$
X:

Y:

If $X=0 R=1$
If $Y=0 R=0$

In ($\left.e^{\wedge} x\right)$
Function Performed:
$R=\ln (X)$
$R^{\prime}=e^{X}$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
In

$e^{\wedge} x$

Restrictions:
In:

$e^{\wedge} \mathbf{x}$ - The domain of real numbers.
$\log 2\left(2^{\wedge} x\right)$
Function Performed:
$R=\log _{2}(X)$
$R^{\prime}=2^{X}$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\log 2$

$2^{\wedge} x$

Restrictions:
log2:

$2^{\wedge} \mathbf{x}$ - The domain of real numbers.

$\log 10\left(2^{\wedge} x\right)$

Function Performed:
$R=\log _{10}(X)$
$R^{\prime}=10^{X}$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
$\log 10$

$10^{\wedge} x$

Restrictions:
$\log 10:$

$10^{\wedge} x$ - The domain of real numbers.

sinh (asinh)

Function Performed:
$R=\frac{1}{2}\left(e^{X}-e^{-X}\right)$
$R^{\prime}=\ln \left(x+\sqrt{x^{2}+1}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
sinh

asinh

Restrictions:
sinh - the domain of real numbers.
asinh - the domain of real numbers.

cosh (acosh)

Function Performed:
$R=\frac{1}{2}\left(e^{X}+e^{-X}\right)$
$R^{\prime}=\ln \left(x+\sqrt{x^{2}-1}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
cosh

acosh

Restrictions:
cosh - the domain of real numbers.
acosh:

tanh (atanh)

Function Performed:
$R=\frac{\sinh (x)}{\cosh (x)}=\frac{e^{2 x}-1}{e^{2 x}+1}$
$R^{\prime}=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
tanh

atanh

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
		X	X	

Restrictions:
tanh - the domain of real numbers.
atanh:

csch (acsch)
Function Performed:
$R=\frac{2}{\left(e^{X}-e^{-X}\right)}$
$R^{\prime}=\ln \left(\frac{1}{X}+\frac{\sqrt{1+X^{2}}}{|X|}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
csch

acsch

Restrictions:
csch:

acsch - the domain of real numbers.

sech (asech)

Function Performed:
$R=\frac{2}{\left(e^{X}+e^{-X}\right)}$
$R^{\prime}=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
sech

asech

Restrictions:
sech - the domain of real numbers.
asech:

coth (acoth)

Function Performed:
$R=\frac{\cosh (x)}{\sinh (x)}=\frac{e^{2 x}+1}{e^{2 x}-1}$
$R^{\prime}=\frac{1}{2} \ln \left(\frac{X+1}{X-1}\right)$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
coth

acoth

Restrictions:
coth

acoth:

$y->[x]$ (s [->)

Function Performed:
R

R'

Consumed:
X (potential the whole stack)
Results in:
None
Alt Function:
YES
Flags:
$y->[x]$

s[]->

Restrictions:
$y->[x]$
None
s[]->
X Integer and:

[x]->x (->s[x])
Function Performed:
R

R'

Consumed:
X
Results in:
Y Moved to storage and X
Alt Function:
YES
Flags:
[x]->x

->s[x]

Restrictions:
[x]->x
None
->s[x]
Stack register must exist

Count

Function Performed:
$\mathrm{R}=$ Counts from bottom of stack to last non-0 stack value
Consumed:
X , and X additional stack items.

Results in:
X
Alt Function:
NO
Flags:
sum

Restrictions:

sum

X - Must be integer and

$\mathbf{x - > \%}(\%->x)$
Function Performed:
R

R'

Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
x->\%

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
X			X	

s[]->

Restrictions:
$y->[x]$
None
s[]->
\% must exist in storage
mean (mdian)
Function Performed:
mean (simple average)
$R=\frac{1}{x} \sum_{i=1}^{X} S[i]$
mdian (median)
Sort. report mid point.
When X is even, report average of two midpoints.
Consumed:
X, and X additional stack items.

Results in:
X
Alt Function:
YES
Flags:
mean

mdian

Restrictions:
mean
X - Must be integer and

mdian
X - Must be integer and

stdev (psdev)

Function Performed:
stdev Sample Deviation
$R=\sqrt{\frac{1}{X-1}} \sum_{i=1}^{X}\left(S[i]-\frac{1}{x} \sum_{i=1}^{X} S[i]\right)^{2}$
psdev Population Deviation
$R^{\prime}=\sqrt{\frac{1}{x} \sum_{i=1}^{X}\left(S[i]-\frac{1}{x} \sum_{i=1}^{X} S[i]\right)^{2}}$

Consumed:

X , and X additional stack items.

Results in:
X
Alt Function:
YES
Flags:
stdev

psdev

Restrictions:
stdev
X - Must be integer and

psdev
X - Must be integer and

$\Sigma \mathrm{SD}$ (TS_{S})

Function Performed:
sum Simple Sum
$R=\sum_{i=1}^{X} S[i]$
prdct Simple Product
$R^{\prime}=\prod_{i=1}^{x} S[i]$
Consumed:
X , and X additional stack items.
Results in:
X
Alt Function:
YES
Flags:
sum

prdct

Restrictions:

sum

X - Must be integer and

prdct
X - Must be integer and

ᄃ \mathbf{S}^{\wedge} 2

Function Performed:
$R=\sum_{i=1}^{X} S[i]^{2}$
Consumed:
X, and X additional stack items.

Results in:
X
Alt Function:
NO
Flags:

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
X		X		

Restrictions:
X - Must be integer and

Count

Function Performed:
$\mathrm{R}=$ Counts from bottom
of stack to last non-0 stack value
Consumed:
None
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X - Must be integer and

yChsX

Function Performed: Binomial Coefficient
$R=\binom{y}{x}=\frac{y!}{x!\cdot(y-x)!}=\frac{y^{\underline{x}}}{x!}$
Consumed:
X, Y
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
X - Must be integer and greater than 0:

Y - Must be integer and greater than or equal to X

X* \%
Function Performed:

Consumed:
X
Results in:
X
RESULT IS ROUNDED TO NEAREST 0.01.
Alt Function:
NO
Flags:
sum

Restrictions:
\% Storage register must exist.
x->\% (\%->x)
Function Performed:
R

R'

Consumed:
X
Results in:
X
Alt Function:
YES
Flags:
x->\%

s[]->

Restrictions:
$y->[x]$
None
s[]->
\% must exist in storage

\%
Function Performed:
$\mathrm{R}=\mathrm{X} / 100$
Consumed:
X
Results in:
X
Alt Function:
YES
Flags:

Restrictions:
None

$\Delta \%$

Function Performed:
$R=\frac{y-x}{x} \cdot 100 \%$
Consumed:
X
Results in:
X
RESULT IS ROUNDED TO NEAREST 0.01.
Alt Function:
NO
Flags:

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}
X	X	X	X	

Restrictions:

X:

Y: The domain of real numbers.
fVal
Function Performed:
Future Value
$R=P V \cdot(1+i)^{t}$
$R=z \cdot\left(1+\frac{y}{100}\right)^{x}$
$\mathrm{Z}:=\mathrm{PV}$ (present Value)
Y: = interest/cycle)
X: $=\boldsymbol{t}$ (cycles)
Consumed:
X, Y, Z
Results in:
X
RESULT IS ROUNDED TO NEAREST 0.01.
Alt Function: YES

Flags:

Restrictions:

X:

Y:

Z: The domain of real numbers.
pVal
Function Performed:
Present Value
$R=\frac{F V}{(1+i)^{t}}$
$R=z \cdot\left(1+\frac{y}{100}\right)^{-x}$

Z: = PV (present Value)
Y: = interest/cycle)
X: = \boldsymbol{t} (cycles)
Consumed:
X, Y, Z

Results in:

X
RESULT IS ROUNDED TO NEAREST 0.01.
Alt Function:
YES
Flags:

Restrictions:
X:

Y:

Z: The domain of real numbers.
pi
Function Performed:
R = M_PI
$\mathrm{R}=$
3.14159265358979323846264

338327950288
Consumed:
None
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
None
e
Function Performed:
$R=M _E$
$\mathrm{R}=$
2.71828182845904523536028

747135266250
Consumed:
None
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
None

C
Function Performed:
Speed of light
R =299792458.0
Units: m / s
Value is exact by definition
Consumed:
None
Results in:
X
Alt Function:
NO
Flags:

Restrictions:
None
h
Function Performed:
Planck Constant in
$R=6.626068 \times 10-34$
Units: $\mathrm{m}^{2} \mathrm{~kg} / \mathrm{s}$
Consumed:
None
Results in:
X
Alt Function:
NO
Flags:

\mathbf{O}	\mathbf{U}	\mathbf{E}	\mathbf{N}	\mathbf{C}

Restrictions:
None
$\infty(-\infty)$
Function Performed:
Infinity
$\mathrm{R}=\infty$
$R^{\prime}=-\infty$
Consumed:
None
Results in:
X
Alt Function:
YES
Flags:

Restrictions:
None

NAN (-NAN)

Function Performed:
Not A Number
$\mathrm{R}=\mathrm{NAN}$
R' = -NAN
Consumed:
None
Results in:
X
Alt Function:
YES
Flags:

Restrictions:
None

